COMPOUND MEASURES

Pearson Edexcel – Tuesday 19 May 2020 - Paper 1 (Non-Calculator) Higher Tier

1.

L				
13	196	P1	for vol A = 1400 \div 70 (=20) or for mass B = 280 \times 30 (=8400)	
		P1	for density $C = \frac{1400 + "8400"}{(1 - \frac{9800}{2})}$ or answer with digits 196	
			"20"+30 50	
		A1	cao	An answer of 350 from 70 + 280 gets
				no marks

Pearson Edexcel - Tuesday 21 May 2019 - Paper 1 (Non-Calculator) Higher Tier

2.

15	48	M1	for method to use a volume formula with correct substitution for the	May work without π or with an approximation of
			cone, sphere or hemisphere	π ; must use the correct radius of 3 (and 10) in
			eg $\frac{1}{3} \times \pi \times 3^2 \times 10$ or $\frac{4}{3} \times \pi \times 3^3$ or $\frac{2}{3} \times \pi \times 3^3$ oe	substitution
		M1	for complete method to find total volume	
			$\operatorname{eg} \frac{1}{3} \times \pi \times 3^2 \times 10 + \frac{2}{3} \times \pi \times 3^3$	
		M1	(dep first M1) for correct partial simplification, eg 30π or 18π	Must be cone or hemisphere
		A 1	cao	Accept 48 <i>π</i>
			SC B2 for answer of 264 or 264π	

Pearson Edexcel - Tuesday 11 June 2019 - Paper 3 (Calculator) Higher Tier

3.

13	1.01	P1 P1	for $1.09 \times 60 \ (= 65.4 \ \text{or} \ \frac{327}{5})$ or $0.97 \times 128 \ (= 124.16 \ \text{or} \ \frac{3104}{25})$ for $1.09 \times 60 \ (= 65.4 \ \text{or} \ \frac{327}{5})$ and $0.97 \times 128 \ (= 124.16 \ \text{or} \ \frac{3104}{25})$ or "65.4" + "124.16" (= 189.56 \ \text{or} \ \frac{4739}{25})	Note that the volumes may be converted to ml, eg 1.09 × 60000 (= 65400)
		P1	for a complete process to find the density of antifreeze eg (" 65.4 " + " 124.16 ") \div 188 or 189.56 \div 188 or $\frac{4739}{\sigma r}$ \div 188	Candidates working in ml must use 188,000
		A1	for answer in the range 1.00 to 1.01	If an answer within the range is seen in working but then rounded incorrectly award full marks. Accept 1 for 1.00 Note that the correct value is 1.008

Pearson Edexcel - Thursday 8 November 2018 - Paper 2 (Calculator) Higher Tier

20	3.75	P1	works to find vol of frustum eg $1/3\pi(3.6)^2 \times 6.4 - 1/3\pi(1.8)^2 \times 3.2$	B
20	5.75		or 86.858 – 10.857 (=24.192π or 76.00)	
		P1	works to find vol of hemisphere eg $\frac{1}{2} \times \frac{4}{3}\pi \times 3.6^3$ (=31.104 π or 97.7)	781.7 by use of diameter does not get the mark
		P1	mass of frustum as [vol]×density eg "76.00" × 2.4 (=182.4) or mass of hemisphere as [vol]×density eg "97.7"×4.8 (=469.037)	[vol] is their volume which could be ft using the radius, using the diameter, or could be another value as long as it is stated as being the volume, or clearly intended from working.
		P1	mean density as total mass ÷ total volume eg ("182.4" + "469.037") ÷ ("76" + "97.7") or "651.4". + "173.7"	All figures must come from correct method shown.
		A1	answer in the range 3.7 to 3.8	

Pearson Edexcel - Thursday 7 June 2018 - Paper 2 (Calculator) Higher Tier

5.

19	905	P1	for correct use of formula for the volume of a sphere eg $\frac{1}{4} \times \frac{4}{3} \times \pi \times r^3$ (= 576 π or 1809) OR 576 $\pi \times 4$ or 2304 π or 7238(= $\frac{4}{3} \times \pi \times r^3$)	We do not need to see what is in the brackets to award this mark. The contents of the bracket alone would score P0
		P1	for a complete correct process to find r, eg $r = \sqrt[3]{\frac{576 \times 4 \times 3}{4}}$ or $r = 12$	Could be shown in several stages $\sqrt[3]{\frac{576 \times 4 \times 3}{4}} = \sqrt[3]{1728}$
		P1	for a process to find the curved surface area eg $\frac{4 \times \pi \times radius ^2}{4}$ (=144 π or 452) OR the surface area of both flat surfaces eg $(2 \times \frac{\pi \times radius ^2}{2})$ OR complete expression for the total surface area eg $\frac{4\pi r^2}{4} + \frac{\pi r^2}{2} \times 2$ oe	Radius used must be clearly identified as their radius of the solid
		P1	for process to find the complete surface area eg $\frac{4 \times \pi \times [radius]^2}{4} + (2 \times \frac{\pi \times [radius]^2}{2})$	
		Al	answer in the range 904.7 – 905 or 288π (SCB2 for an answer in the range 358.1 – 359.2)	If an answer is given in the range but then incorrectly rounded, award full marks.

Pearson Edexcel - Tuesday 13 June 2017 - Paper 3 (Calculator) Higher Tier

6.

6	1.01	P1	fruit syrup 15×1.4 (= 21) or water 280×0.99 (= 277.2) or apple juice 25×1.05 (= 26.25)
		P1	(dep P1) for complete process to find the total mass e.g. "277.2" + "26.25" + "21" (= 324.45) or a weighted density eg $15 \times 1.4 + 320$ (= 0.065625) or $280 \times 0.99 + 320$ (= 0.86625) or $25 \times 1.05 + 320$ (= 0.08203125)
		P1	(dep P2) for complete process to find the density eg "324.45" ÷ 320 (=1.01) or "0.065625" + "0.86625" + "0.08203125" (= 1.0139)
		Al	1.01 to 1.014

Pearson Edexcel - Specimen Papers Set 2 - Paper 3 (Calculator) Higher Tier

8 (a)	36.4	P1 P1 P1 P1 A1	start process eg method to find area of trapezium complete process to find volume of tank process to find time eg volume $\times 1000 \div 300$ process to find 85% of volume or of time for 36.4 or 36 mins 24 secs
(b)		C1	explanation eg if the average rate was slower it would take more time, if the average rate was faster it would take less time

Pearson Edexcel - Specimen Papers Set 2 - Paper 3 (Calculator) Higher Tier

8.

12	12.2	P1begins process eg 150÷19.3 (= 7.77) or 150÷8.9 (= 16.85)P1complete process to find total volume P1P1complete process to find the density of the alloy A1A1for answer in range 12.1 to 12.2
----	------	---

Pearson Edexcel - Specimen Papers Set 1 - Paper 3 (Calculator) Higher Tier

9.

17	l = 20x $x = 3$	20736	P1 for a first step to solve the problem eg method to find the slant height of the cone or the volume equals $768\pi x^3$ P1 for setting up an equation for the curved surface area in terms of x eg $2160\pi = \pi \times 12x \times 20x$ P1 for complete method to find the value of x P1 for a method to find the volume or value of V A1 cao
----	-----------------	-------	--

Pearson Edexcel - Thursday 9 June 2016 - Paper 2 (Calculator) Higher Tier

10.

14		3 5	 M1 for a complete method to find the area of the cross section, eg. 15 × 2 +"(12 - 4)" × 2 + 15 × 2 (= 76) or for finding the volume of a relevant prism, eg. 15 × 2 × 120 (= 3600) "(12 - 4)" maybe just seen on the diagram M1 for a method to find the volume of the bar, eg. "76" × 120 (= 9120) or ft "area of cross section"×120 provided "area of cross section" includes a method to find the area of at least two relevant rectangles M1 for "volume" × 8, eg. "9120" × 8 (= 72960) or 250 × 1000 + 8 (= 31250) NB "volume" must be dimensionally correct M1 (dep on previous M1) for 250 + ("volume" × 8) + 1000, eg. 250 + "72960 + 1000" (= 3.4265) or "31250" + "9120" A1 for an answer of 3 with correct working
----	--	-----	---

Pearson Edexcel - Wednesday 4 November 2015 - Paper 1 (Non-Calculator) Higher Tier

19	756π	M1 for $\frac{1}{3}\pi r^2 \times 10$ (=270 π) A1 for $r = 9$
		M1 (dep on M1) for $\frac{1}{2} \times \frac{4}{3}\pi \times "9"^{3}$ (= 486 π) M1 for 270 π + "486 π " oe A1 cao

Pearson Edexcel - Monday 8 June 2015 - Paper 2 (Calculator) Higher Tier

12.

16		Volume of A = $\frac{140}{0.7} = 200$ Volume of B = $\frac{128}{1.6} = 80$ Mass of C = 140+128 = 268 Density of C = $\frac{268}{280}$	0.957	4	M1 for finding the volume of either liquid A or B or the mass of liquid C M1 for a complete method to find the volume AND mass of liquid C M1 (dep M2) for "total mass" ÷ " total volume" A1 for 0.957 to 0.96
----	--	---	-------	---	--

Pearson Edexcel - Wednesday 5 November 2014 - Paper 1 (Non-Calculator) Higher Tier

13.

20 128π	5 M1 for $\frac{4\pi r^2}{2} = 32\pi$ oe A1 for $(r =) 4$ M1 for $2 \times \pi \times "4" \times 10$ (=80 π) or $\pi \times "4"^2$ (=16 π) or ft their r M1 for $32\pi + "80\pi" + "16\pi"$ oe or 402.1 –402.3 or ft their r A1 cao	
---------	---	--

AQA GSCE – Tuesday 21 May 2019 – Paper 1 (Non - Calculator) Higher Tier

26	$(x - 2)^2$ or $(x + 2)^2$ or $a = 2$	M1	oe implied by $x^2 + 2x + 2x + 4 (+ b)$ or $x^2 + 4x + 4 (+ b)$		
	$1 = (3 + 2)^2 + b$	M1dep	oe		
	-24	A1	accept (-2, -24)		
	Additional Guidance				
	$(x-2)^2$ 1 = (3 - 2) ² + b			M0	
	$1 = (3 - 2)^2 + b$			MO	